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The expected success of Chagas disease control pro-

grams in the Southern Cone countries relied on the

assumption that Triatoma infestans, the main domestic

vector, did not maintain silvatic foci except in the

Cochabamba valley in Bolivia. Recent fieldwork revealed

that wild populations of this vector are much more

widespread throughout Bolivia than previously thought.

Therefore, it is important to find out whether these

silvatic populations could jeopardize control efforts in

Bolivia, and to investigate their possible occurrence in

neighboring regions of Paraguay and Argentina.

Control of Chagas disease by elimination of Triatoma
infestans is being successfully pursued in most of the
Southern Cone countries where this triatomine species is
the main domestic vector [1]. At the beginning of the late
1990s, the incidence of Chagas disease was an estimated
500 000 new cases per year [2]. Control interventions have
been estimated to reduce the incidence of Chagas disease
in the Southern Cone region by 60% (in Paraguay) and by
up to 99% (in Uruguay and Chile; http://www.who.int/ctd/
chagas/epidemio.htm). In Bolivia, recent Chagas disease
control activities have made substantial progress. How-
ever, the major obstacle to the elimination of T. infestans
in several Southern Cone countries derives from perido-
mestic triatomine populations because of the reduced
effectiveness of pyrethroids in peridomestic habitats [2].
The expected success of interruption of Chagas disease
transmission by vector control relied on some of the
triatomine vector’s biological behavioral traits. Particu-
larly important was the almost exclusively domestic
nature with the exception of restricted areas in Cocha-
bamba valley (in the Bolivian Andes) where a few wild
populations have been reported [3]. The idea of an absence
of wild insect populations (which would preclude the
recolonization of treated areas by insects coming from
silvatic foci) was a pivotal argument used for launching
large-scale control campaigns against this particular
vector. The recent reports providing evidence that wild
populations of T. infestans are much more widespread
throughout Bolivia than previously thought (Figure 1)
draw attention to the need of further research on this
important and neglected issue, particularly on the role
that silvatic populations play in the process of re-
colonization of insecticide-treated villages.

The Bolivian wild foci of T. infestans

Although previous reports indicated that T. infestans
isolates (Figure 2a) were occasionally found in silvatic
areas in Argentina, Paraguay and Brazil, it was assumed
that T. infestans did not maintain silvatic foci in these
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Figure 1. The distribution of wild Triatoma infestans foci in Bolivia. Silvatic foci of

T. infestans have been found in three distinct Andean departments (Cochabamba,

La Paz and Chuquisaca) and in the Boreal Chaco, Santa Cruz department [6–9].
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areas because most specimens were found in ecotopes
relatively close to human dwelling [4,5]. However, the
existence of true Bolivian silvatic foci is now beginning to
be documented. Wild-type T. infestans was first reported
more than 50 years ago in a stony hill situated in the
immediate outskirts of Cochabamba [2600 m above sea
level (asl)], an important Andean city [6]. During the
1980s, this observation was extended to some limited sites
of the Cochabamba region and near other valleys [7]. More
recently (beginning in the late 1990s), several new foci
were found in three Andean departments: (i) Cochabamba
[the new prospected site of Cotapachi located in Quilla-
collo district (Figure 2b), (2750 m asl; 17826 0S, 66817 0W);
(ii) La Paz (Caracato district, 2500 m asl; 17806 0S,
67841 0W); and (iii) Chuquisaca [Mataral district
(a) (b) (c)(c)(b)(a)

Figure 2. Silvatic habitat of Triatoma infestans. (a) Triatoma infestans is the main ve

rupicolous (encountered among rocks) in the Andes within high-altitude regions, where

T. infestans can be found among rocks in the middle of xerophytic plants. (d) In the borea

cacti predominate in the lowest stratum. Photographs taken by F. Noireau.
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(Figure 2c), 1750 m asl; 18836 0S, 65807 0W] [8]. These wild
populations always occur among rock-piles [7], and seem
to be associated with small rodents and marsupials as
indicated by a recent survey carried out at the Cotapachi
site. In this site, T. infestans were collected from 30% of
the burrows where Bolomys and Philotys rodent species,
and Thilamys marsupials find shelter. Both the hosts
and insect vectors presented high level of natural infection
(O60%) with the T. cruzi parasite. Silvatic T. infestans
populations have also been found outside the Andes, in the
lowlands of the Bolivian Chaco (Figure 2d) [9]. The
observation that these insects were chromatically differ-
ent from the typical T. infestans (overall darker coloration
with small yellow markings on the connexivum) led to
the idea that they could represent a different species,
but allozyme, mitochondrial DNA (mtDNA) and cyto-
genetic analyses confirmed its status as a population of
T. infestans [10,11]. The capture of numerous immature
forms and adults in hollow trees enabled the characteriz-
ation of these T. infestans ‘dark morphs’ main habitat. The
infection of this vector by T. cruzi was low (2.5%) and the
animal hosts are still unknown [12].
T. infestans center of origin

The Andean mesothermic valleys in Bolivia have long
been regarded as the geographical center of origin for
T. infestans. This was mainly because wild populations
could only be found in these valleys. More recently, this
view has also been supported by genetic analysis [13]. The
introduction of T. infestans to the domestic environment
would have been a consequence of the domestication by
the pre-Columbians of wild guinea pig, a natural host.
After this first step of adaptation to the domestic
environment, T. infestans would then have dispersed to
other countries of South America, apparently in associ-
ation with human migrations, ultimately reaching Brazil
during the 20th century [14]. The recent detection of wild
T. infestans foci in the Bolivian Chaco challenges this view.
This discovery prompted the suggestion that the most
ancient populations would be those of the dry subtropical
Chaco forest in southeastern Bolivia, Paraguay and the
north of Argentina [15]. However, recent findings based on
allozymes, nuclear ribosomal DNA (rDNA) and genome
size favor the first hypothesis [16,17]. Indeed, the wild
TRENDS in Parasitology 
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T. infestans named ‘dark morphs of the Chaco’ seem
genetically closer to the domestic forms from the same
region than to the Andean silvatic forms [16]. But if the
Andean hypothesis is accepted, it implies that at least one
event of recolonization of silvatic habitat by a domestic
population would have occurred in the Chaco. There is
still another hypothesis that requires examination: that
the Chaco population is a consequence of a straight
expansion of a silvatic Andean population that gradually
lost heterochromatic DNA during the process. This
hypothesis could be tested with an Andes–Chaco transect
and subsequent quantification of total DNA content per
cell of collected specimens [15].

Distribution of T. infestans silvatic populations

Andean silvatic T. infestans populations are certainly
more widespread throughout the mesothermic valleys of
Bolivia than was previously accepted. Indeed, our field
research shows that efficient investigations in potential
sites (e.g. stony hills) have been repeatedly successful in
detecting silvatic populations of the vector (F. Noireau
et al., unpublished). With regard to other silvatic melanic
populations (such as the dark morph population), a much
wider distribution throughout the Chaco ecosystem in
Argentina, Bolivia and Paraguay is also expected, as
indicated by a recent field collection of dark specimens
carried out by our group in southeastern Bolivia at the
Paraguayan border, and by the record of one specimen
in Salta, Argentina (R. Carcavallo, unpublished). The
application of ecological landscape approaches (with the
use of tools such as geographical information systems and
remote sensing) on the currently known T. infestans
silvatic foci would enhance our ability to predict the
geographic distribution of other silvatic populations for
this species [18].

Can wild insects recolonize insecticide-treated areas?

The two silvatic T. infestans populations studied so far
have been considered to be isolated from neighboring
domestic populations [19–21]. Would this evidence be
enough to ensure optimism for unimpeded elimination of
domestic populations of this vector [22,23]? The lack of
gene flow between silvatic and domestic vectors could be
alternatively explained by the extremely high infestation
rates of dwellings in these particular areas, which would
hamper the colonization attempts by these wild insects.
Moreover, because of the ecological variety of the wild foci
(and our limited knowledge of them), we do not have
enough arguments to guarantee that they do not pose any
epidemiological risk to nearby villages. For example, to
date, no study to assess gene flow between domestic and
wild populations has been performed in the Chaco. Unlike
Mataral and the Chaco, where the silvatic sites are
relatively far away from the nearest huts (from 500 m
up to 30 km), in Cotapachi, they begin a couple meters
away from the huts. In such a scenario, it is hard not to
envisage insects moving freely from rock-piles to huts and
vice-versa, as if the whole area was a single panmictic
unit. Further research is needed to clarify this important
issue, and to determine the role that silvatic populations
play in the process of recolonization of insecticide-treated
www.sciencedirect.com
villages. Recolonization could be tested genetically by
comparing silvatic and domestic insect populations with
the use of polymorphic markers such as mtDNA and
microsatellites, to determine whether gene flow is occur-
ring. Alternatively, in Cotapachi, because of the proximity
of wild and domestic insect populations, more traditional
approaches of estimating dispersal capabilities such as
mark–release–recapture studies might be more suitable to
investigate this issue. Finally, if T. infestans has under-
gone a domestication process in the past, why could it
not happen again in the future? Because these silvatic
T. infestans foci are located in Bolivia, which is in the
middle of the Southern Cone region, it is important to
investigate if they have spread to neighboring regions
of northern Paraguay and Argentina. In conclusion, it
is essential to determine the role that these silvatic
T. infestans populations have as potential source of re-
infestation of treated areas, and thus jeopardize current
control efforts.
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Letter
Veterinary antiparasitic needs: met and unmet

Wicher G. Holland

Intervet International, PO Box 31, 5830 AA Boxmeer, The Netherlands
I thank Timothy Geary et al. for their plea to obtain more
support for basic parasitological research [1]. Before they
arrive at this correct conclusion, however, there are some
arguable statements made in the section headed ‘New
opportunities’ in their article published in Trends in
Parasitology.

Under the subheading Cryptosporidium parvum infec-
tions in cattle, it is stated that ‘no drug with proven
efficacy and safety is commercially available’. I would like
to bring readers to the attention that, in the mid-1990s, in
several European countries, a product based on halofugi-
none lactate (Halocurw) was introduced, with proven
efficacy and safety against C. parvum in young calves
[2,3]. This product is currently registered and com-
mercialized in most of the European Union countries.

In the section dealing with tissue coccidians, the
authors commented that ‘conclusive efficacy of evidence
in the field even for registered vaccines for horses and
cattle remains to be published’. Recently, an article was
published describing the effect of a vaccine comprising
killed, whole Neospora caninum tachyzoites (Bovilisw

Neoguard) on the crude abortion rate in dairy cows
under field conditions [4]. To complete the picture on
tissue coccidians, although not for cattle, a live Toxo-
plasma gondii vaccine (Ovilisw Toxovax) is registered and
sold in a number of European countries for immunizing
susceptible ewes against the effects of T. gondii infection,
namely early embryonic death and abortion [5,6].

Indeed, there are several unmet veterinary antipar-
asitic needs, however, for some of these needs, there are
solutions already available.
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